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Consideration of Some Dilute-Solution 
Phenomena Based on an Expression 
for the Gibbs Free Energy 1 

D. A. Jonah 2'3 

Rigorous expressions based on the Lennard-Jones (6-12) potential, are presen- 
ted for the Gibbs and Helmholtz free energy of a dilute mixture. These 
expressions give the free energy of the mixture in terms of the thermodynamic 
properties of the pure solvent, thereby providing a convenient means of 
correlating dilute mixture behavior with that of the pure solvent. Expressions for 
the following dilute binary solution properties are derived: Henry's constant, 
limiting activity coefficients with their derivatives, solid solubilities in super- 
critical gases, and mixed second virial coefficients. The Henry's constant 
expression suggests a linear temperature dependence; application to solubility 
data for various gases in methane and water shows a good agreement between 
theory and experiment. In the thermodynamic modeling of supercritical fluid 
extraction, we have demonstrated how to predict new solubility-pressure 
isotherms from a given isotherm, with encouraging results. The mixed second 
virial coefficient expression has also been applied to experimental data; the 
agreement with theory is good. 

KEY WORDS: activity coefficient; dilute solution; Henry's constant; Lennard- 
Jones potential; mixture; solubilities; supercritical extraction; virial coefficients. 

1. I N T R O D U C T I O N  

Dilute solutions provide us with an ideal opportunity for relating mixture 
behavior to properties of the pure components. In dilute solutions, solute- 
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solute contributions to the total potential energy are negligible, while the 
contribution from solute-solvent interactions is small enough to be con- 
sidered a perturbation of the dominant solvent-solvent interactions. The 
appropriate combination of pure solvent properties to be used in such an 
approach is far from obvious, however. Emperical attempts at such 
correlations have been made; for example, Hildebrand's solubility 
parameters expression [1, 2] for limiting activity coefficients marks one of 
the earliest attempts at treatments with some theoretical basis. Rigorous 
approaches to the study of mixtures that yield a correlation with pure 
solvent properties are to be found in the corresponding states treatment of 
Longuet-Higgins and co-workers [3-5], Scott [6], Prigogine et al. [7], 
and Wojtowicz et al. [8]. 

In this paper, we exploit the special feature of dilute solutions already 
referred to above and perform a perturbation expansion about the state of 
the pure solvent. In a previous paper [9], such an expansion was made; 
however, some terms, which would have made this expansion correct to 
first order in solute mole fraction xa, were neglected. These neglected terms 
are considered here. 

2. EXPRESSION FOR THE GIBBS FREE ENERGY 

We consider, to start with, a dilute binary mixture; the extension to a 
multicomponent system will be quite obvious. 

The mixture consists of N molecules, Na of species a, and N b of species 
b, where N, ~ N b. For such a system, with total potential energy U, assum- 
ing that the internal degrees of freedom of the molecules are unaffected by 
the configurational state of the system, the molar Gibbs free energy may be 
written in the form, 

g( T, p, xa) = ~ xi[ RTln xi + g? ( T) + RTln( N/e) ] - kB Tln Ao 
i 

#~( T) = -RTIn[~pi( T)/A 3] 

Ac -= Jo  I v  exp(-fipv) d(v/v* ) f exp(-flU) d(r N) d(o9 N) 

(a) 

Oi and A 3 are, respectively, contributions to the partition function from the 
internal and translational degrees of freedom. Ao is the Gibbs phase 
integral for the system within the (N-p-T) ensemble; r n, w n abbreviate the 
center of mass and orientational coordinates rl, r2,..., rn and wl, w2,..., w,, 
respectively, for the N molecules; fi = 1/(kB T), kB denotes the Boltzmann 
constant. The volume v* is an arbitrary, yet sufficiently small 
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volume--typically of the order of the molecular volume--which does not 
affect the thermodynamic properties of the system [-10]. 

In order to carry out a perturbation expansion about the pure solvent, 
we first need to identify the perturbation energy Upert  appropriately. As 
shown by Jonah et al. [-9], the total potential energy Umix of the dilute 
mixture can be written in the form, 

Umi x = Usolv-Jr- gpe r t  (2) 

where Usolv is the total potential energy for the pure solvent, component b, 
with the same number of molecules, N, as the mixture, while Uoert consists 
essentially of contributions arising from the solute-solvent and solute- 
solute interactions. (See Eq. (13) in Ref. 9.) 

Expansion about the pure solvent state, using a procedure similar to 
those in Ref. 9 and based on the assumption of a Lennard-Jones 6-12 
potential model, leads to the following expression for the molar Gibbs free 
energy gr, which we give in residual form: 

gr(r, p, xa)= ~br(r, P ) +  ["~al, ~ --k*(xa);/a~,q X.Xb + O(X~) 

,~(1) = ZabZrR T _  2(1 + Ztab) U r 

.~(2) C(a2b)(ZCpr) q_ [C(a2b) q_ Xab](p2~gT__ pVOC)__ )~abZrRT ab (3) 
Zab = st( t2 -- 1 ), )(ab = st( t2 -- 2) 

C ( 2 ) _  1 + v . b  + 2Z'ab , Vab=S2t4f(t 2) [ ' f ( 1 )  = 1] ab - -  

s = eab/ebb, t = (rr,b/abb) 3, k * ( x ~ )  = k l  + k z x a  

[A residual (or excess ) property Pr at temperature T, pressure p, and mole 
fraction x is being defined here as P r = - P ( T ,  p , x ) - P ( T ,  p ~  p~ being 
sufficiently low for the system to be in an ideal-gas state.] #br, Ur, Cvr, and 
z~ denote, respectively, the molar residual chemical potential, internal 
energy, constant-pressure heat capacity, and compressibility factor of the 
pure solvent; c~ and ~CT are the pure solvent isobaric coefficient of volume 
expansion, and the isothermal coefficient of compressibility, respectively. 
eab, etc., denote the usual L-J  molecular parameters, while kl and k2 are 
empirical constants; f is an unknown function, which becomes unity for a 
system consisting of molecules of the same size, that is, t = 1. 

The generalization of Eq. (3) to a multicomponent system with n com- 
ponents, in which 1 denotes the solvent component, and 2, 3 ..... n, the 
solute components highly dilute in the solvent, is readily made; thus, we 
have 

gr(T, p, x ) = ~ l r ( T  , p ) +  ~ [,~(1)--k*(xj)~2)]XlXjq-O(x2, x2,...) ( 4 )  
y=2 
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Our interest is centered on the molar residual chemical potential #at of the 
solute component a, and its limiting value #~ ,  at infinite dilution; we 
therefore write down expressions for these two quantities, using Eq. (3): 

~ar( T, p, Xa)= #br (T ,  p )  AV#ar(ab)(r, p ,  Xa) 
(5) 

ar ~ ~ ~ P,  "~ab A ~b - -  k2XaXb~ab 
with 

#a~r = #br  -[" Aab 
(6) 

Aab -- z(1) -- kl)~(a 2 ) =  A, ab 

The terms /~b) and Aab represent the solute-solvent interaction con- 
tributions to/~ar a n d / ~ ,  respectively. 

We observe that in the limit Uaa = Ubb : tdab (i.e., s = 1, t = 1) gr in 
Eq. (3) and #ar in Eq. (5) reduce to the residual chemical potential ~br of 
the pure solvent, as one would expect. 

By reasoning completely analogous to that leading to Eq. (4), we can 
use the canonical ensemble partition function to derive the corresponding 
expression for the molar residual Helmholtz free energy Ar : 

Mr(T , v, Xa) = Abr(T , v) q- XaXb[~abZrRT-- 2(1 + Z',b) Ur] 

+ XaXb { C(aZ)( TCvr)- Zab [ TV (~T)v-- RT]} k*(xa) + O(x2) 
(7) 

Abr(T, v) is the molar residual Hetmholtz free energy for the pure-solvent b 
component with the same number N of molecules as the mixture, and Cvr 
the molar residual heat capacity at constant volume; other quantities have 
the same meanings as in Eqs. (3) and (5). 

3. EXPRESSIONS FOR SOME THERMODYNAMIC PROPERTIES 

In this section, we write down expressions for some dilute solution 
properties of interest, using Eq. (5) for the molar residual chemical poten- 
tial of the solute component. 

3.1. The Henry's Constant, Limiting Activity Coefficients, and Derivatives 

From the definition of Henry's constant 

Hab = Lira (fJXa) (8) 
xa~O 

we deduce at once from Eq. (5) that 

Hab = f a  e x p ( A  ab/R T) (9) 
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This expression for Henry's constant may be compared with the standard 
form: 

Hab : exp(A#~ (10) 

where A# ~ is the standard change in partial molar free energies upon 
solution. It is seen at once that A/~~ ~ [see Eq. (6)], in which the con- 
tributions from the solvent-solvent and the solute-solvent interactions are 
explicitly displayed. 

The limiting activity coefficients 7i of a component i and derivatives 
can also be readily shown to be of the forms 

Lim y~ - 7~ = (fa/fb) exp(A,b/RT) (11) 
Xa = 0 

L i m \  ~x~ ) \ Oxa ) ~ 2 ~ ~ ~ ~ ~ k l ~ k 2 ~ ~ ~) ~ / R  z (12) 
X a ~ 0  

3.2. Solubility of Solids in Supereritical Gases 

Assuming a dilute solution of the solid (component a) in the super- 
critical solvent gas (component b) such that terms of O(ya) in the solute 
mole fraction Ya may be neglected, it is readily shown that 

Ya = ( fSa~ ) exp( - A ab/ R T )  ( 13 ) 

f~2,id = p;~t q~Sat exp [ v~ ~ (p -- psat)/R T] (14) 

where ~0 is the fugacity coefficient, and the superscript sat refers to the 
saturated vapor. 

3.3. Mixed Second Viral Coefficient 

For a dilute binary gaseous mixture (solute component a and solvent 
component b), we find that the limiting fugacity coefficient q~[ of the solute 
is given by 

In (p~ = par/RT+ ln(p~ (15) 

p~ being sufficiently low for the mixture to be considered ideal. 
Using the standard thermodynamic expression for ~0[, the mixed 

second virial coefficient Bah is given by 

Bab = (pvb/RT)Bbb + (A~b/2RT)vb (16) 

Bbb being the second virial coefficient of the pure solvent. 
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4. COMPARISON WITH EXPERIMENT AND 
M A C H I N E  C A L C U L A T I O N S  

4.1. Simulation Data for Henry's Constant 

In  reduced  var iables ,  we have  for the c a s e  (Gab/O'bb) 3= 1, o n  us ing  
Eq. (7), 

l n ( H , b / p k  . T) = ffbr/T* -- (2 U * / T *  )( 1 -- s) -- k1(8 U*/O T* )(1 - s) 2 
(17) 

T* - kB T/e, p*  = pa  3 , U* - Ur/Ne , ]A~r = ,/Abr/N ~ 

The  L - J  e q u a t i o n  of s tate  by  N icho l a s  et al. [ 11 ] was used to o b t a i n  

U * / T *  = - 3 . 9 7 5 ,  8 U * / S T *  = 0.71 

the c o n s t a n t  kl  was ass igned the va lue  0.5. 
CD 

~O J ,  
C~ :1 

I I I 

s = IEab / I~ b b 

Fig. 1. Variation of Henry's constants with energy ratio, s =- 8 a b / g b b  , for a binary 
mixture with molecules of the same size. ( ) Machine calculation at reduced 
temperature T-~kBT/s= 1.2 and reduced density p*=-a3p=0.7 1-12]; ( . . . .  ) 
theory according to Eq. (17) with kl =0.5. 
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Figure 1 shows the comparison between our theory and the simulation 
data of Shing and Gubbins [12],  for p * = 0 . 7  and T * =  1. In the range 
0.25 < s < 2, the agreement is seen to be quite good, becoming exact as 
s = l .  

4.2. Experimental Data for Henry's Constant 

At liquid densities, the terms containing ~ and ~W in Eq. (9), as well as 
the compressibility factor terms, are negligible. We may therefore write, 

ln(Hab/Jb) = 2(1 + Z ' a b ) ( A H V / R T  - 1) - k~ C ( 2 ) ( C p r / R )  (18)  

where Z',b and c~2) have been defined in Eq. (3); A H  v is the molar latent ~ a b  

heat of vaporization. 
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Fig. 2. Temperature variation of the solubility of gases He, H2, and N2 in liquid 
methane. • (3, E3, and A, expt. points for He, H2, N2, and Ar, respectively. 
Data source, Ref. 18. 
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Equation (18) suggests that a plot of F = - ( R / C r ,  r ) l n ( H ~ b / f b )  versus 
( R / C p r ) ( A H V / R T  - 1) should be linear; Figs. 2 and 3 show such plots for 
various gases dissolved in liquid methane and water. 

For the first set of mixtures with simple molecules, we have obtained 
the LennardMones parameters from the critical constants of the pure com- 
ponents, according to the equations S~,ab/~bb=(1--Kab)(Tac/Tbc)l/2; 

= ,,i/3~3/~,,3. Tjc and vic denote the critical temperature t -  (o.b/ bb) 3 +  bo, , o v a ,  

and critical volume, respectively, of a component j; Kab gives the deviation 
from the geometric mean rule, which is evaluated from experimental data. 
The molecular parameter f(t  2) defined in Eq. (3) is also to be obtained 
from experimental information. 

Equation (18), with ~ t a b  and C~a 2) obtained as above, has been used to 
calculate Henry's constant for the gases Ar, N2, H2, and He dissolved in 
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Fig. 3. Temperature variation of the solubility of various gases in water, x, �9 
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for H2S and SO2 have been multiplied by a factor of 10 2. Data source, Ref. 18. 
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Table I. Comparison Between Experimental" and 
Calculated b Henry's Constant According to Eq. (18) 

ln ( Hab/f  b ) 

T (K) Expt. Calc. 

He/CH4 

H2/CH4 

Ar/CH4 

N2/CH4 

95 11.78 11.75 
110 9.58 9.69 
124.9 7.86 8.03 
139.9 6.48 6.49 
154.8 5.32 5.29 
170.0 4.20 4.18 

90.14 9.71 9.63 
102.97 7.95 8.06 
109.86 7.22 7.35 
116.51 6.56 6.71 
122.00 6.10 6.23 
127.00 5.71 5.83 
144.26 4.56 4.39 
171.92 2.98 2.40 

90.67 2.92 2.89 
109.0 2.12 2.19 
115.9 1.91 1.95 
119.6 1.88 1.84 
123.3 1.75 1.73 
126.0 1.68 1.65 

122.1 2.72 2.74 
126.2 2.62 2.62 
133.2 2.41 2.37 
138.7 2.31 2.22 
144.3 2.22 2.08 
155.4 1.94 1.76 
161.0 1.81 1.73 
171.5 1.57 1.58 

a The experimental data were obtained from Refs. 17 and 18. 
b The following parameter values were used for Kab and f(0"6b/0"6b): 

(--2.15, --4.74) He/CH4; (-0.024, 1.878) Ar/CH4; (-0.489, 0.422) 
H2/CH4; (-0.02, 1.75) Na/CH4. 
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liquid methane at various temperatures. Table I compares these calculated 
values with experimental values; the agreement is seen to be good. 

Experimental data for the activity coefficients and their derivatives 
may be treated in analogous fashion to the above, making possible the 
interpolation of their values between two given temperatures; such inter- 
polated values may then be used in empirical expressions (e.g., the Abbott- 
Van Ness [ 13 ] and conic equations [ 14-1) for the excess Gibbs free energy- 
composition isotherms, to predict new isotherms. This has in fact been 
shown to be feasible and will be reported elsewhere. 

Table II. Solubilities of 2,6-Dimethylnaphalene in 
Supercritical Ethylene as Predicted by Eq. (19) a 

104ya 

T P (MPa) Expt. Calc. 

308K 

318K 

328K 

9 9 7.73 
10 14 12.73 
14 34 34.7 
18 59 57.0 
22 81 79.5 
24 92.78 b 90.3 
26 103 90.7 

7.8 1.886 1.35 
12 21.99 21.3 
16 55.6 52.1 
20 90.82 82.1 
24 138.8 111.5 
28 171.3 139.6 

7.8 2.364 1.44 
12 22.03 18.39 
16 67.43 56.14 
20 130.0 97.2 
24 200.2 132.9 
28 275.2 173.7 

"The following values of 106p sat (MPa) and v~ ~ (liters) for 2,6- 
dimethylnaphthalene were used: (1.22, 0.137) 308K; (3.45, 0.137) 
318 K; (9.13, 0.137) 328 K. 

b All experimental values for the 308 K isotherm, except this one, have 
been graphically interpolated. 
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4.3. Solid Solubilities in Supercritical Solvent 

From Eq. (13), we may write for the solubility y,  of the solid 

pSaat [pVSa ~ 

Ya = f---~- exp L -~- 

X =  (pZvtCT --  pwT)/RT, 

( K ~ X + K 2 Y + K 3 Z + K 4 W ) ]  (19) 

Y = Cpr/R, Z ==- 2Ur/RT, W =__ Zr 

where KI, K2, etc., are known functions of the L-J molecular parameters. 
In applying the above equation, however, to experimental data, K1,..., K4 
have been treated as empirical parameters. By using four experimental data 
points from the T=  308 K isotherm these parameters are evaluated for the 
system 2,6-dimethylnapthalene/ethylene [153; with these same values of 
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the parameters, isotherms at T =  318 and 328 K are predicted. The results 
shown in Table II indicate good agreement between experiment and theory. 

4.4. Mixture Second Virial Coefficient 

By approximating the compressibility factor of the pure solvent by 
unity and neglecting the residual properties in Eq. (16), the final form is 
suggestive of the following temperature variation of the second virial coef- 
ficients: 

(Bab -- Bbb)/Vb = a + b i T +  c / T  2 (20) 

where a, b, and c are temperature-independent constants. 
The equation has been tested against two sets of experimental data: 

argon/methane and carbontetrafluoride/methane [t6].  Figure 4 shows the 
lhs of Eq. (20) plotted against reciprocal temperature for Ar/CH4, which is 
seen to be reasonably linear, indicating a negligible contribution from the 
c / T  z term. A corresponding plot for the data set C F 4 / C H  4 deviates from 
linearity; however, three data points at three temperatures, 273.15, 423.15, 
and 523.15K, have been used to evaluate a, b, and c (with Vb 
corresponding to 0.1 MPa), to obtain a =  1.096x 10 4, b=0.372, and 
c = -122. Table III compares experimental with calculated values at other 
temperatures; the agreement is excellent. 

Table III. Mixed Second Virial 
Coefficient for C F 4 / C H 4  a 

Bab (cm 3) 

T (K) Expt. Calc. 

298.15 -48.48 --48.69 
303.15 -46.09 --46.26 
323.15 -37.36 --37.69 
348.15 -28.31 --28.49 
373.15 -20.43 --20.7 
398.15 -13.98 --14.09 
448.15 --3.21 - 3.39 
498.15 4.94 4.83 
548.15 11.39 11.28 
573.15 14.10 13.96 
596.15 16.55 16.37 

a The calculated values are obtained from Eq. (20) for methane 
volumes at 0.1 MPa. 
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5. SUMMARY AND CONCLUSION 

We have in this study identified a set of pure solvent thermodynamic 
properties, with which dilute solution behavior may be correlated. 
Although the interactions have been modeled by the L-J (6-12) potential, 
the success of our theory for simple as well as complex molecular mixtures 
encourages us to believe that the set of pure solvent properties identified on 
the basis of this model has a much wider range of validity. 

In spite of the success of our theory, the divergence at the solvent's 
critical point of Eq. (3) for the Gibbs free energy presents a problem that 
needs to be resolved; on the other hand, the Helmholtz free energy, Eq. (7), 
is well behaved at this point. 
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